Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Study on the Distortion Characteristic Due to Spot Welding of Body structure Assembly for Passenger Car

2002-07-09
2002-01-2022
In this paper, the distortion analysis in spot welded area of car body - front side member, it is found out that the optimum condition for panel assembly is closely related to the welding sequence, location of clamping system, number, shape and welding force. The distortion resulting from welding sequence is minimized starting from the surroundings of the clamping system and in the way that the value of the welding force is from large to small. The MCP is determined from the positions inducing the minimum distortion in panel through calculating the deformation and reacting force of the panel. The welding force originating from the manufacturing tolerance of assembly is a critical design factor determining the welding sequence and the clamping system that yield minimum distortion in spot welding of body panel.
Technical Paper

Evaluation of Collapse Absorption Capability for Hydroformed Tubes

2002-07-09
2002-01-2130
The tube hydroforming technology (THF) has been extensively used as auto-body structural members such as engine cradle, frame rail etc. in order to meet the urgent need of vehicle weight and cost reduction as well as high quality. In this paper we experimentally investigate the mechanical properties for hydroformed tubes with various bulging strains under the plane strain mode. Axial compression tests for hydroformed tubes are performed to investigate the collapse load and collapse absorption capacity through the collapse load-displacement curves. Moreover the collapse absorption capacities are compared and discussed between as-received, hydroformed, and press formed tubes. Results demonstrate that the hydroformed tubes show higher collapse absorption capability in comparison with the as-received tube and the press formed tube, because of its high yield strength due to strain hardening.
Technical Paper

The Development of Lab-Simulation Test to Accelerate the Durability Validation of Engine Mounting and Wiring Harness

2003-03-03
2003-01-0949
With the advent of cars with computerized engines, drivers sometimes suffer discomfort with “check engine” light problem, and as a result, insist on increasing levels of reliability in their cars. Hence, reliability of the wiring harness has become a very important automotive design characteristic. On one hand, the more secure an engine mounting system is, the more stable the engine wiring harness is. In order to enhance their durability, car manufacturers need to perform many validation tests during the development phase which involves a lot of time and cost. In this study, a newly developed lab-simulation test is proposed to qualify the design of engine mounting and engine wiring early in the design cycle and reduce time and expense. The lab-simulation test has contributed to a significant cost and time reduction and has shown good correlation to the original proving ground test.
Technical Paper

An Optimized Control Strategy for Parallel Hybrid Electric Vehicle

2003-03-03
2003-01-1329
A systematic process of optimization is suggested to obtain the best control maps for a parallel type hybrid electric vehicle. Taking the fuel consumption as the cost function and driving cycle as part of the constraints, an optimization problem for CVT pulley ratio control and motor torque control can be formulated. The change of the battery charge state between the start and end point of the given driving cycle also works as a constraint. In order to see the effect of various control strategies on system behavior and overall fuel consumption, a simulation model was built to accommodate the functional blocks representing hybrid powertrain subsystem components and corresponding control units.
Technical Paper

Multi-Disciplinary Vehicle Styling Optimization: All at Once Approach for Stiffness, Light-Weight and Ergonomics with Analytical Model Based on Compartment Decomposition

2003-03-03
2003-01-1330
The topology optimization made a great success in pure structural design in an actual industrial field. However, a lot of factors interact each other in a actual engineering field in highly complicated manner. The typical conceptual trade-off is that cost and performance, that is, since they are competing factors, one can't improve the specific system without consideration of interaction. The vehicle has lots of competing factors, especially like fuel economy and acceleration performance, mass and stiffness, roominess and cost, short front overhang and crash-worthiness and so on. In addition, they interact each other in a more complicated manner, that is, fuel economy has something to do with not only engine performance but also mass, roominess, stiffness, the length of overhang, trunk volume, etc. So, most of decision-makings have been made by management based on subjective knowledge and experience.
Technical Paper

Design Optimization Analysis of Body Attachment for NVH Performance Improvements

2003-05-05
2003-01-1604
The ride and noise characteristics of a vehicle is significantly affected by vibration transferred to the body through the chassis mounting points from the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning. This paper presents the procedure of body attachment stiffness analysis, which contains the correlation between experimental test and FEA. It is concluded that the most important factors are panel thickness, section type and mounting area size. This procedure makes it possible to find out the weak points before proto car and to suggest proper design guideline in order to improve the stiffness of body structure.
Technical Paper

A Case Study on the Improvement of Idle Quality of an SUV Car with DI Diesel Engine

2003-05-05
2003-01-1464
With its advantage on the economic and environmental reason the preference of vehicles with diesel engine is growing in the domestic market as well as European market. And automobile makers are enthusiastic in the development of diesel engine vehicles with more comfortable interior atmosphere in order to meet consumers' requirements. Generally, when compared with gasoline engine, diesel engine has much bigger vibratory input to the mounting structure and produces higher level in interior noise and body vibration. In this paper, the improvement of NVH quality at the idle state of an SUV car with DI diesel engine has been achieved through tuning engine mounts based on TPA (Transfer Path Analysis) for low frequency vibration and interior booming noise.
Technical Paper

Reduction of Road Noise by the Investigation of Contributions of Vehicle Components

2003-05-05
2003-01-1718
The mobility technique is used to analyze the transfer functions of road noise between the suspension and the body structure. In the previous analyses, the suspension system and the body structure are altogether modeled as subsystems in the noise transfer path. In this paper, the mobility between the suspension and the body structure is analyzed by the dynamic stiffness at the connecting points. The measured drive point acceleration FRF at the connecting point in the transfer path was used to estimate the contributions of subsystems. The vibration modes of tire, the acoustic noise of tire's interior cavity, the vibration modes of the car's interior room, and the vibrations of body structure and the chassis are also considered to analyze the coupling effects of the road noise. Analyzing the measured results, direction for modification of car components is suggested.
Technical Paper

The Experimental Study on the Body Panel Shape to Minimize the Weight of the Damping Material

2003-05-05
2003-01-1715
The experimental study on the automotive body panel shape has researched a way to reduce the damping material. Among each differently designed panel shapes, the curved panel shape, with high rigidity, or dynamic stiffness, and uneven deformation mode, has found to most reduce the vibration energy and damping material application. This study shows how could the panel shape influence the NVH performance, which would be measured according to several specifically designed panel shapes in order to compare with the conventional bead panel. And this research proposes the way to optimize the damping material to minimize its weight.
Technical Paper

The Effect Of Intake System Geometry On The Sensitivity Of Hot Film Type Air Flow Meter

2003-05-19
2003-01-1802
The air fuel ratio of current gasoline engine is mostly controlled by various air flow meters. When CVVT (Continuous Variable Valve Timing) device is applied to gasoline engine for higher engine performance, MAP (Manifold Absolute Pressure) sensor can not be applied anymore due to intake valve motion. Therefore HFM (Hot film airflow meter) is used for measuring the intake air flow instead of MAP sensor. Usually HFM has a little sensitivity in flow direction, therefore reverse flow from engine to air cleaner can not be measured. Also, HFM maker request enough straight duct length nearly 10 times of a duct diameter making a fully developed flow. But, most vehicles have no enough space to install such an intake system in engine room. Thus the inserted duct was applied to confirm the stable fully developed flow in air duct. The various duct configurations in front of HFM effect on the sensitivity of HFM.
Technical Paper

Minimizing the Rattling of Door Glass

2017-03-28
2017-01-0443
Significant effort has been expended to improve the sound made by a closing car door. This study focuses on reducing door glass rattle sounds, not only evaluating the rattle influence of door glass support but also introducing an approach to reduce glass rattle noise by using sealing components. The first part of the study is dedicated to minimizing vibration. A jig is constructed to evaluate the influence of a door glass support on the rattling. The jig is employed so that the glass meshing between the A and B pillars can be controlled; the glass holder moves in the x- and z-directions and the belt molding moves in the y-direction. An impact hammer test was adopted for investigating door glass rattle. The frequency response obtained via impact hammer testing is analyzed by varying the glass support points and important factors that should be considered in early design stages are obtained. The second study is about optimizing vibration absorption.
Technical Paper

Optimization for Brake Feeling in Vehicle without Brake Noise

2016-09-18
2016-01-1928
Recently, upon customer’s needs for noise-free brake, carmakers are increasingly widely installing damping kits in their braking systems. However, an installation of the damping kits may excessively increase softness in the brake system, by loosening stroke feeling of a brake pedal and increasing compressibility after durability. To find a solution to alleviate this problem, we first conducted experiments to measure compressibility of shims by varying parameters such as adhesive shims (e.g., bonding spec., steel and rubber thickness), piston’s shapes (e.g., different contact areas to the shims), and the numbers of durability. Next, we installed a brake feeling measurement system extended from a brake pedal to caliper. We then compared experimental parameters with brake feeling in a vehicle. Finally, we obtained an optimized level of brake feeling by utilizing the Design for Six Sigma (DFSS).
Technical Paper

Evaluating the Effect of Two-Stage Turbocharger Configurations on the Perceived Vehicle Acceleration Using Numerical Simulation

2016-04-05
2016-01-1029
Charge boosting strategy plays an essential role in improving the power density of diesel engines while meeting stringent emissions regulations. In downsized two-stage turbocharged engines, turbocharger matching is critical to achieve desired boost pressure while maintaining sufficiently fast transient response. A numerical simulation model is developed to evaluate the effect of two-stage turbocharger configurations on the perceived vehicle acceleration. The simulation model developed in GT-SUITE consists of engine, drivetrain, and vehicle dynamics sub-models. A model-based turbocharger control logic is developed in MATLAB using an analytical compressor model and a mean-value engine model. The components of the two-stage turbocharging system evaluated in this study include a variable geometry turbine in the high-pressure stage, a compressor bypass valve in the low-pressure stage and an electrically assisted turbocharger in the low-pressure stage.
Technical Paper

Development of Smart Shift and Drive Control System Based on the Personal Driving Style Adaptation

2016-04-05
2016-01-1112
In general, driving performance is developed to meet preference of average customers. But there is no single standardized guideline which can satisfy various driving tastes of all drivers whose gender, cultural background, and age are different. To resolve this issue, automotive companies have introduced drive mode buttons which drivers can manually select from Normal, Eco, and Sport driving modes. Although this multi-mode manual systems is more efficient than single-mode system, it is in a transient state where drivers need to go through troubles of frequently selecting their preferred drive mode in volatile driving situations It is also doubtful whether the three-categorized driving mode can meet complex needs of drivers.. In order to settle these matters, it is necessary to analyze individual driving style automatically and to provide customized driving performance service in real time.
Technical Paper

Closed-Loop Control Method for Monitoring and Improving the Diesel Combustion Noise

2016-06-15
2016-01-1770
This paper presents two closed-loop control methods for monitoring and improving the combustion behavior and the combustion noise on two 4-cylinder diesel engines, in which an in-cylinder pressure and an accelerometer transducer are used to monitor and control them. Combustion processes are developed to satisfy the stricter and stricter regulations on emissions and fuel consumption. These combustion processes are influenced by the factors such as engine durability, driving conditions, environmental influences and fuel properties. Combustion noise could be increased by these factors and is detrimental to interior sound quality. Therefore, it is necessary to develop robust combustion behaviors and combustion noise. For this situation, we have developed two closed-loop control methods. Firstly, a method using in-cylinder pressure data was developed for monitoring and improving the combustion noise of a 1.7L engine. A new index using the values calculated from the data was proposed.
Technical Paper

Transient Nonlinear Full-Vehicle Vibration Analysis

2017-03-28
2017-01-1553
This paper presents a transient vibration analysis of a nonlinear full-vehicle. The full-vehicle model consists of a powertrain, a trimmed body, a drive line, and front and rear suspensions with tires. It is driven by combustion forces and runs on a road surface. By performing time-domain simulation, it is possible to capture nonlinear behavior of a vehicle such as preload due to gravitational force, large deformation, and material nonlinearity which cannot be properly treated in the conventional steady state analysis. In constructing a full-vehicle, validation process is essential. Validation process is applied with respect to the assembling sequence. The validation starts with component levels such as tires, springs, shock absorbers, and a powertrain, and then the full-vehicle model is constructed. Model validation is done in two aspects; one is model accuracy and the other is model efficiency.
Technical Paper

A Study of the Auxiliary Belt Drive System for Actual Fuel Saving

2017-03-28
2017-01-0898
The engine indicated torque is not delivered entirely to the wheels, because it is lowered by losses, such as the pumping, mechanical friction and front auxiliary power consumption. The front auxiliary belt drive system is a big power consumer-fueling and operating the various accessory devices, such as air conditioning compressor, electric alternator, and power steering pump. The standard fuel economy test does not consider the auxiliary driving torque when it is activated during the actual driving condition and it is considered a five-cycle correction factor only. Therefore, research on improving the front end auxiliary drive (FEAD) system is still relevant in the immediate future, particularly regarding the air conditioning compressor and the electric alternator. An exertion to minimize the auxiliary loss is much smaller than the sustained effort required to reduce engine friction loss.
Technical Paper

An Improvement Research of Under-floor of Midsize Sedan-Focusing on 2010 New YF Sonata Development Examples-

2011-04-12
2011-01-0772
Hyundai Kia Motors started developing the under-floor of YF sonata, the base platform for mid-to-large size sedans, in order to reduce weight and improve body performance. For local dynamic rigidity, there are design improvement and additional support structures at suspension mounting area. The strength at the joint where longitudinal and transverse members meet is increased to improve the overall body stiffness, and also the riding comfort and handling. Impact performance and safety is also improved by straightening the major structural members and strengthening the joint areas, efficiently absorbing and inducing the impact energy through load paths. As the body of a vehicle is the constitution of numerous parts, increased strength at the joints and major structural members with more linear profiles have played crucial roles in the improvement in overall body performance.
Technical Paper

Development of Effective Exhaust Gas Heat Recovery System for a Hybrid Electric Vehicle

2011-04-12
2011-01-1171
The success of improved fuel economy is the proper integration of thermal management components which are appropriately performed to reduce friction and wasted energy. The thermal management systems of vehicle are able to balance the multiple needs such as heating, cooling, or appropriate operation within specified temperature ranges of propulsion systems. Since the propulsion systems of vehicle have changed from a single energy source based on conventional internal combustion engine to hybrid system including more electrical system such as full type of hybrid electric vehicle or plug-in hybrid electric vehicles, a new transition associated with vehicle thermal management arises. More efficient thermal management systems are required to improve the fuel economy in the hybrid electric vehicles because of the driving of electric traction motor and the increase of engine off time. The decrease of engine operation time may not sustain the proper temperature ranges of engine and gearbox.
Technical Paper

A Study on the Acoustic Simulation for the Components of an Intake System

2011-05-17
2011-01-1520
The reduction of intake noise is a very important factor in controlling the interior noise levels of vehicles, particularly at low and major engine operating speeds. A vehicle intake system generally consists of air cleaner box, hose, duct, and filter element. Also, resonators and porous duct are included, being used to reduce intake noise. For more accurate estimation of the transmission loss (TL), it seems important to develop a CAE model that accurately describes this system. In this paper, simple methods, which can consider the effects of filter element and vibro-acoustic coupling, are suggested which could remarkably improve estimation accuracy of the TL. The filter element is assumed as equivalent semi-rigid porous materials characterized by the flow resistivity defined by the pressure drop, velocity, and thickness.
X